SPS放电等离子烧结系统
放电等离子烧结(Spark Plasma Sintering)即SPS,是将金属、陶瓷等粉末装入模具内,利用上、下模冲及通电电极将特定烧结电源和压制压力施加于烧结粉末,经放电活化、热塑变形和冷却而完成,是制取高性能材料的一种粉末冶金烧结技术。
放电等离子烧结具有在加压过程中烧结的特点,脉冲电流产生的等离子体及烧结过程中的加压有利于降低粉末的烧结温度。具有升温速率快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶体块材料、梯度材料等。
一、SPS的烧结原理
SPS是利用放电等离子体进行烧结的,等离子体是物质在高温或特点激励下的一种物质状态,是除固态、液态和气态以外,物质的第四状态。等离子体是电离气体,由大量正负带电粒子和中性粒子组成,并表现出集体行为的一种准中性气体。
产生等离子体的方法包括加热、放电和光激励等。放电产生的等离子体包括直流放电、射频放电和微波放电等离子体。SPS利用的是直流放电等离子体。
SPS装置主要包括以下几个部分:轴向压力装置;水冷冲头电极;真空腔体;气氛控制系统(真空、氩气);直流脉冲电源及冷却水、位移测量、温度测量和安全等控制单元。
SPS与热压(HP)有相似之处,但加热方式不同,它是一种利用通-断直流脉冲电流直接通电烧结的加压烧结法。通-断式直流脉冲电流的主要作用是产生放电等离子体、放电冲击压力、焦耳热和电场扩散作用。在SPS烧结过程中,电极通入直流脉冲电流时瞬间产生的放电等离子体,电极通入直流脉冲电流时瞬间产生的放电等离子体,使烧结体内部各个颗粒均匀地自身产生焦耳热并使颗粒表面活化。SPS是有效利用粉末内部的自身发热作用而进行烧结的。这种放电直接加热法,热效率*,放电点的弥散分布能够实现均匀加热,因而容易制备出均质、致密、高质量的烧结体。SPS烧结过程可以看作是颗粒放电、导电加热和加压综合作用的结果。除加热和加压这两个促进烧结的因素外,在SPS技术中,颗粒间的有效放电可产生局部高温,可以使表面局部熔化、表面物质剥落;高温等离子的溅射和放电冲击清除了粉末颗粒表面杂质(如去除表层氧化物等)和吸附的气场。电场的作用是加快扩散过程。
纳米材料
传统的热压烧结、热等静压等方法制备纳米材料,很难保证晶粒的纳米尺寸,又达到*致密的要求。利用SPS技术,因其加热迅速,合成时间短,可明显抑制晶粒粗化。利用SPS技术,因其加热迅速,合成时间短,可明显抑制晶粒粗化。利用SPS能快速降温这一特点来控制烧结过程的反应历程,避免一些不必要的反应发生,这就可能使粉末中的缺陷和亚结构在烧结后的块体材料中得以保留,在更广泛的意义上说,这一点有利于合成介稳材料,特别有利于制备纳米材料。
梯度功能材料
梯度功能材料(FGM)是一种组成在某个方向上梯度分布的复合材料,各层的烧结温度不同,利用传统的烧结方法难以一次烧成。利用CVD ,PVD等方法制备梯度材料,成本很高,也很难实现工业化生产。通过SPS技术可以很好地克服这一难点。
SPS可以制造陶瓷/金属、聚合物/金属以及其他耐热梯度、耐磨梯度、硬度梯度、导电梯度、孔隙度梯度等材料。梯度层可到10多层,实现烧结温度的梯度分布。
高致密度、细晶粒陶瓷和金属陶瓷
在SPS过程中,样品中每一个粉末颗粒及其相互间的空隙本身都可能是发热源。用通常方法烧结时所必需的传热过程在SPS过程中可以忽略不计。因此烧结时间可以大为缩短,烧结温度也明显降低。对于制备高密度、细晶粒陶瓷,SPS是一种很有优势的烧结手段。